Cognitive performance after postoperative pituitary radiotherapy: a dosimetric study of the hippocampus and the prefrontal cortex.
نویسندگان
چکیده
OBJECTIVE The hippocampus and prefrontal cortex (PFC) are important for memory and executive functioning and are known to be sensitive to radiotherapy (RT). Radiation dosimetry relates radiation exposure to specific brain areas. The effects of various pituitary RT techniques were studied by relating detailed dosimetry of the hippocampus and PFC to cognitive performance. METHODS In this cross-sectional design, 75 non-functioning pituitary macroadenoma (NFA) patients (61±10 years) participated and were divided into irradiated (RT+, n=30) and non-irradiated (RT-, n=45) groups. The RT+ group (who all received 25 fractions of 1.8 Gy; total dose: 45 Gy) consisted of three RT technique groups: three-field technique, n=10; four-field technique, n=15; and five-field technique, n=5. Memory and executive functioning were assessed by standardized neuropsychological tests. A reconstruction of the dose distributions for the three RT techniques was made. The RT doses on 30, 50, and 70% of the volume of the left and right hippocampus and PFC were calculated. RESULTS Cognitive test performance was not different between the four groups, despite differences in radiation doses applied to the hippocampi and PFC. Age at RT, time since RT, and the use of thyroid hormone varied significantly between the groups; however, they were not related to cognitive performance. CONCLUSION This study showed that there were no significant differences on cognitive performance between the three-, four-, and five-field RT groups and the non-irradiated patient group. A dose-response relationship could not be established, even with a radiation dose that was higher on most of the volume of the hippocampus and PFC in case of a four-field RT technique compared with the three- and five-field RT techniques.
منابع مشابه
Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats
Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...
متن کاملEffects of systemic and intra-prefrontal cortex administrations of ethanol on spatial working memory in male rats
Introduction: Ethanol can induce a wide spectrum of neurophysiological effects via interaction with multiple neurotransmitter systems and disruption of the balances between inhibitory and excitatory neurotransmitters. Prefrontal cortex is involved in cognitive process including working memory and is sensitive to ethanol. Present study investigates the effects of intraperitoneal (i.p.) admini...
متن کاملP152: Functional and Structural Brain Changes across Childhood Traumatic Events
Although childhood is connected with high neuroplasticity changes, but because of the immaturity of the neural and cognitive systems, it is ready to grow developmental deviations and future susceptibility for neuropsychological disorders. Young children face cognitive, emotional, and linguistic limits that may lead them more vulnerable to post-traumatic stress disorder (PTSD). PTSD prevalence d...
متن کاملP2: Neocortex and Memory
The human prefrontal cortex differs from all other mammals: the seat of complex cognition, abstract thinking, planning and future forecasting, and behavioral inhibition. Using our prefrontal cortex is a significant energy drain on the body, so despite its impressive capabilities, it’s daily capacity is limited. Some researchers estimate a mere 2-3 hours per day of activity depletes the pr...
متن کاملEffects of left prefrontal transcranial direct current stimulation on the acquisition of contextual and cued fear memory
Objective(s): Behavioral and neuroimaging studies have shown that transcranial direct current stimulation, as a non-invasive neuromodulatory technique, beyond regional effects can modify functionally interconnected remote cortical and subcortical areas. In this study, we hypothesized that the induced changes in cortical excitability following the application of cathodal or anodal tDCS over the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of endocrinology
دوره 166 2 شماره
صفحات -
تاریخ انتشار 2012